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Abstract

Soybean is a globally significant crop, playing a vital role in human nutrition and agriculture. Its complex genetic structure and
wide trait variation, however, pose challenges for breeders and researchers aiming to optimize its yield and quality. Addressing this
biological complexity requires innovative and accurate tools for trait prediction. In response to this challenge, we have developed
SoyDNGP, a deep learning-based model that offers significant advancements in the field of soybean trait prediction. Compared to
existing methods, such as DeepGS and DNNGP, SoyDNGP boasts a distinct advantage due to its minimal increase in parameter volume
and superior predictive accuracy. Through rigorous performance comparison, including prediction accuracy and model complexity,
SoyDNGP represents improved performance to its counterparts. Furthermore, it effectively predicted complex traits with remarkable
precision, demonstrating robust performance across different sample sizes and trait complexities. We also tested the versatility of
SoyDNGP across multiple crop species, including cotton, maize, rice and tomato. Our results showed its consistent and comparable
performance, emphasizing SoyDNGP’s potential as a versatile tool for genomic prediction across a broad range of crops. To enhance
its accessibility to users without extensive programming experience, we designed a user-friendly web server, available at http://xtlab.
hzau.edu.cn/SoyDNGP. The server provides two features: ’Trait Lookup’, offering users the ability to access pre-existing trait predictions
for over 500 soybean accessions, and ’Trait Prediction’, allowing for the upload of VCF files for trait estimation. By providing a high-
performing, accessible tool for trait prediction, SoyDNGP opens up new possibilities in the quest for optimized soybean breeding.
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INTRODUCTION
Food insecurity is a growing issue, heightened by the increasing
world population and the challenges of climate change [1]. Tradi-
tional breeding methods, while effective, can be slow and struggle
to keep pace with the demands. For instance, they fall short of
achieving the annual yield improvement rate of 2.4% needed to
double global soybean production by 2050 [2, 3]. To speed up
the process, breeders have turned to genomic tools, including
genomic selection (GS) [4].

GS is an advanced technique that can make breeding faster
and more efficient [5, 6]. It uses genomic prediction models, along
with many genetic markers across the genome, to predict how
a trait will perform [7–10]. It has been used successfully in both
animal and plant breeding, especially in improving traits like crop
yield, breeding value, genomic-environs prediction and disease
resistance [5, 9, 11–15]. However, using GS effectively relies on
many factors, like the size of the training population, heritability
of traits, marker density and the prediction model used [16]. Tra-
ditional models, such as linear regression models (GBLUP, rrBLUP

and Bayesian methods), often struggle with capturing complex
non-additive effects [9, 17–19]. This is the context in which deep
learning methods, such as DeepGS and DNNGP, can play a role
[10, 20]. They use multiple hidden layers to capture complex, non-
linear relationships in the data. However, these techniques require
large data sets for accurate predictions, which can be a challenge
in some cases.

Soybean [Glycine max (L). Merr.] is a globally significant crop,
providing a rich source of protein and oil for human and animal
consumption [21]. In soybean breeding, genomic prediction has
already shown its potential [3, 22, 23]. However, there are still
hurdles to overcome, like capturing the full range of genetic
diversity in soybeans and refining genomic prediction methods.

In this study, we aim to look more closely at how deep learning
methods can be used for genomic prediction in soybean breed-
ing. We used a rich source of soybean genomic data, like the
genotypes of thousands of soybean samples from the USDA Soy-
bean Germplasm Collection and their phenotypes from the GRIN-
global web server [24, 25]. We modeled a deeper neural network
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framework for genomic prediction in soybean called SoyDNGP. We
introduce the unique 3D layer input and the convolutional neural
network (CNN) architecture of SoyDNGP. We compare SoyDNGP’s
predictive capabilities with other machine learning (ML) methods
and deep learning models like deepGS and DNNGP. Our findings
indicate that SoyDNGP consistently outperforms these models,
particularly in regression tasks. We test SoyDNGP’s applicabil-
ity across various soybean populations, including wild soybeans,
landraces and elite cultivars. Our model demonstrates high pre-
dictive accuracy across these diverse populations. We extend
the application of SoyDNGP to other species like cotton, maize,
rice and tomato. Our model maintains high predictive accuracy,
proving its versatility and effectiveness beyond soybeans. To make
genomic prediction accessible to a broader audience, we introduce
a user-friendly web server for SoyDNGP, featuring a trait lookup
and trait prediction tool.

MATERIALS AND METHODS
Data sets used for genomic prediction of soybean
The data used for training and predicting with the SoyDNGP
model were procured from two comprehensive online databases:
SoyBase and GRIN-Global [25, 26]. The genotype information of
a large collection of 20 087 soybean accessions, including 42 509
high-confidence SNPs (single-nucleotide polymorphisms) based
on the SoySNP50K iSelect BeadChip, was sourced from SoyBase.
The pre-built variant call format (VCF) file, corresponding to
version 2 of Williams 82 reference sequences, was utilized. In an
attempt to enhance the compatibility of our model with SNP data
sets derived from methods other than the 50 K SNP chip, an inter-
section operation was performed with SNP loci generated from
resequencing data. The Beagle 5.4 program (version 22Jul22.46e)
was used to phase the SNPs and fill in the missing data [27]. This
process resulted in a curated set of 32 032 SNP loci, which were
used for model training. However, to maintain a uniform set of
annual species and minimize the component of mixed accessions,
a selection process was implemented, reducing the number of
soybean accessions used for model construction to 13 784. These
chosen accessions, part of the USDA Germplasm Collection, are
representative of a broad spectrum of landraces and elite cultivars
from around the globe.

Phenotypic data for each of these selected soybean accessions
were obtained from the GRIN-Global database (https://npgsweb.
ars-grin.gov/gringlobal/search). Despite an initial collection of
23 agronomic traits, our focus was narrowed down to 10 key
traits. This included six quantitative traits such as protein content
(protein), oil content (oil), hundred-seed weight (SdWgt), flow-
ering date (R1), the maturity date (R8), yield and plant height
(Hgt). In addition, four qualitative traits were also considered,
which encompassed stem termination (ST), flower color (FC),
pubescence density (PDENS) and pod color (POD). Information on
trait names, along with their corresponding trait ontology (TO)
and crop ontology for soybean (CO), is provided in Table S1.

SoyDNGP model structure
In stark contrast to the traditional DNNGP’s three-layer wide
convolution architecture used for genome-wide big data analysis,
our SoyDNGP utilizes a deep and slim network structure [10]. This
structure is inspired by the concept of segmentation drawn from
the VGG deep learning network [28]. Specifically, SoyDNGP is built
around ’convolutional blocks’, each incorporating a convolutional
layer, a normalization layer and an activation layer (ReLU). The
model structure is illustrated in Figure S1.

Every feature extraction unit in the network is comprised of one
or two of these convolutional blocks, resulting in an effective block
structure for feature extraction. At the end of the convolutional
sequence, we have included a fully connected layer to enhance
the expression capabilities of the network. With the network’s
increased depth, we have also added a normalization layer after
each convolution to enhance the model’s ability to generalize
and a dropout layer (dropout = 0.3) to mitigate overfitting. Overall,
the network architecture integrates 12 convolutional layers and a
single fully connected layer, designed to handle an input tensor of
dimensions (206 × 206 × 3).

The first convolutional module operates using a 3 × 3 con-
volution kernel with a stride of one, which effectively upscales
features and expands the feature map from three channels to
32. The subsequent convolutional block deploys a 4 × 4 convo-
lution kernel with a stride of two, increasing the dimensions of
the feature map while simultaneously reducing the size of each
dimension’s feature map. In the network structure that follows,
each feature extraction block consists of two convolutional layers.

In each feature extraction block, the first convolutional layer
adjusts the convolution kernel size and sampling stride based
on the dimensions of the feature map. This guarantees a com-
plete traversal of the feature map while enabling feature map
scaling and dimensionality increase with the smallest feasible
convolution kernel. The second convolutional layer uses a 3 × 3
convolution kernel to reprocess the feature map from the preced-
ing layer, reinforcing feature extraction. This process is iterated
until the feature map’s channel count escalates to 1024, with
dimensions reducing to 7 × 7. Subsequently, the feature map is
flattened into a 1D vector and forwarded to the fully connected
layer for final classification and regression processing. Given the
extensive information density of the SNP variation-based feature
matrix, we have chosen to move away from the simplistic zero-
padding approach during convolution padding. Instead, we apply
a symmetrical filling technique that leverages matrix elements
at the outermost layer, using the matrix edge as the axis of sym-
metry. This significantly bolsters the feature extraction capability
from the matrix.

To circumvent the potential issue of overfitting in the model
training process induced by the depth of the network, weight
decay was applied to the Adam optimizer. This included a decay
rate of 1e−5 for regression and 0.01 for classification. For quali-
tative traits, the model was trained using the commonly applied
cross-entropy loss function. Conversely, for regression tasks per-
taining to quantitative traits such as protein content and yield,
SoyDNGP utilized the smooth L1 loss function (β = 0.1) as its loss
function [Equation (1)]:

Smooth L1 : L
(
x, y

) = 1
n

∑n

i=1

{
1

2β

(
xi, yi

)2,
∣∣xi − yi

∣∣ < β∣∣xi − yi

∣∣ − 1
2 β, otherwise

(1)

This particular loss function provides a constant gradient when
the loss is significant, thereby mitigating the potential disruption
of training parameters due to substantial gradients. Conversely,
when the loss is minimal, the gradient dynamically reduces,
addressing the challenge of convergence often seen with L1 loss.
Compared to traditional L1 and L2 loss functions, the smooth
L1 loss function offers accelerated convergence speed, improved
robustness to outliers and enhanced gradient smoothness. For
each trait under consideration, we conducted 150 epochs on
GeForce RTX 3090 or RTX A6000, selectively preserving the epoch

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad349/7306824 by N

ational Science & Technology Library user on 03 June 2024

https://npgsweb.ars-grin.gov/gringlobal/search
https://npgsweb.ars-grin.gov/gringlobal/search
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data


SoyDNGP | 3

that demonstrated optimal performance on the test set as the
final model weights.

Lastly, it is noteworthy that we have incorporated a coordinate
attention (CA) mechanism module after the first and final
convolutional layers [29]. This strategy amplifies attention to
the positional information in the feature matrix and between
channels, thereby enhancing spatial information extraction.
SoyDNGP’s model structure is designed and implemented using
PyTorch (version 2.0.1), a widely recognized open-source ML
library [30].

Remodeling deepGS in Python
To facilitate a fair comparison between model architectures, and
acknowledging the limited feature representation ability of the
original deepGS (rDeepGS) model, we opted to enhance it while
maintaining its overall structure [20]. This structure comprises a
combination of a convolution layer, a ReLU activation function,
a max pooling layer and a dropout layer, all linked to two fully
connected layers.

In the rDeepGS model, we substituted the broad 1 × 18 con-
volution kernel with a more compact 3 × 3 kernel. Additionally,
we increased the count of both convolution and pooling layers
in the model to six, yielding a total of 12 layers, as modified
deepGS (mDeepGS). This modification ensured the channel count
of the final feature map aligned with that of SoyDNGP. The model
structure is illustrated in Figure S2. After adjusting the model
structure, we preserved all other conditions identical to those
in the SoyDNGP model for the training phase. This approach
enabled us to draw an equitable comparison between the two
model architectures. Moreover, it underscored the superiority of
a slender and deep convolutional network in the realm of feature
extraction and representation capabilities.

Model construction of traditional ML algorithms
In order to gage the effectiveness of our proposed SoyDNGP
model, we conducted parallel evaluations using nine conventional
ML algorithms on identical data sets. These traditional models
encompassed: K-Nearest Neighbors (KNN), Decision Tree (DT),
Random Forest (RF), Multilayer Perceptron (MLP), Adaptive Boost-
ing (Adaboost), Gaussian Naive Bayes (GNB) and Support Vector
Classification (SVC) with different kernels—Linear, Radial Basis
Function (RBF) and Sigmoid [31–37]. Each trait was subjected to
training using these nine algorithms, facilitating a comparative
analysis of their performance and robustness against SoyDNGP
on the same data set. The hyperparameter configurations for
these models were as follows: In KNN, we assigned the number
of neighbors (n_neighbors) as 3. For DT and RF, we confined the
maximum depth of the trees (max_depth) to 5, while for RF, we
also defined the number of trees in the forest (n_estimators) as
10 and the number of features considered for the optimal split
(max_features) as 1. For MLP, we stipulated the L2 penalty (reg-
ularization term) parameter (alpha) as 1. The remaining models
utilized their default parameters as defined in their respective
libraries.

We implemented a 10-fold cross-validation scheme (n_splits = 10)
for a more rigorous evaluation of the models, ensuring diverse
splits for each run (random_state = None) and random shuffling
of the data prior to fold creation (shuffle = True). This was done
to preclude the possibility of any class’s overrepresentation in
any given fold, which might skew the model’s performance. Our
assessment metrics consisted of precision, recall and F1-score for
each class of traits. Additionally, we calculated the mean and SD
of accuracy across the folds, offering an encompassing view of

the model’s performance. To ascertain their generalizability, we
evaluated the models based on their accuracy on both training
and test data sets.

Data processing of resequencing of soybean
database
To assess the performance of SoyDNGP in different soybean pop-
ulations, we obtained resequencing data from two public data
sets available on NCBI (PRJNA608146) and GSA (CRA002269) [38,
39]. The following steps were taken to process all sequencing
reads: Initially, Cutadapt (version 3.5.0) was employed to excise
potential adaptors and discard low-quality reads [40]. The clean
reads were then aligned to version 2 of the Williams 82 ref-
erence genome sequences (https://phytozome-next.jgi.doe.gov/)
utilizing BWA (version 0.7.17-r1188) [41]. Next, PCR duplicates and
reads that mapped to multiple locations were eliminated using
SAMtools (version 1.15.1-41-gc7acf84) [41, 42]. The GATK pipeline
was subsequently deployed to produce reliable SNPs for variation
and evolutionary analysis. SNPs were preserved if they were bi-
allelic and had an MAF greater than 0.05 [43]. To maintain SNP
loci that overlapped with the SoyDNGP training data, a total of
32 624 SNPs were chosen using VCFTools (version 0.1.16) [44].

The VCF files generated were employed to predict the pheno-
types using pre-built SoyDNGP models. We focused on a popu-
lation comprising 559 soybean accessions for which three phe-
notypes, namely, flowering time, hundreds of seeds weight and
plant height, had been previously measured. These phenotypes
were recorded in 2018 for plants cultivated in Zhengzhou, Henan
Province, China (latitude 34.7N, longitude 113.6E). To quantify the
accuracy of the phenotype predictions, we computed the Pearson
correlation coefficient (r) between the observed phenotypes and
the predicted values.

Web server implementation
Our web server is established on a Webflow template (https://
webflow.com/), which is enhanced with the Bootstrap5 frame-
work (https://getbootstrap.com/) and operated via the Flask web
framework (https://flask.palletsprojects.com/) [45]. To facilitate
additional functions, we have chosen several specific tools. Redis
(https://redis.io/) functions as the custodian of progress data and
prediction results, while MongoDB (https://www.mongodb.com/)
is employed to store the data available for users [46, 47]. Guni-
corn (https://gunicorn.org/), a Python WSGI HTTP server, manages
server operations and Nginx (https://nginx.org/en/) is used for
request forwarding from port 80 to the Gunicorn service, as well
as for load balancing [48]. The entire project is hosted on a Linux-
based system equipped with an i7-13700KF processor and an RTX
3060Ti graphics card. The components of SoyDNGP’s Web Server
are illustrated in Figure S3.

RESULTS
SoyDNGP exhibits impressive capabilities in
soybean genomic prediction
SoyDNGP employs a 3D layer input derived from standard VCF
files. In our study, we used data processing libraries such as
pandas and numpy to convert VCF files into data matrices. These
matrices have sample names as indices and variant sites as
column names. Each row of the matrix undergoes resizing to form
a 3D matrix of size (M,M,3) [Equation (2)].

M =
⌈ √

N
⌉

N = Number of SNPs (2)
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In the input VCF files, there are three types of mutations: 0/0,
0/1, and 1/1. Each type of mutation is represented in a different
channel in the feature map, ensuring the relative distances among
mutations (Figure 1A). Specifically, 0/1 mutations are indicated in
the second channel. The pixel values p[i,j,k] in the feature matrix
only have two possible values: 0 and 1. A value of 0 represents
the presence of a certain type of mutation at that particular
SNP site for the given sample, and a value of 1 indicates the
absence of that mutation. Regarding the dimension of our feature
matrix, we decided on a size based on the data set with the
maximum number of SNP variants, which had 42 000 SNPs. This
decision was made to ensure that the model’s input would have
robustness across different populations. To minimize the impact
of missing SNP sites, we repeatedly filled the feature matrix with
the sample’s own variant features until all pixels were filled. This
method allows the SoyDNGP structure to consider both the type
of genotype and its spatial relationship. Two distinct structures
are deployed for classification (qualitative traits) and regression
(quantitative traits) tasks (Figure 1A).

SoyDNGP implements a CNN architecture that is characterized
by 12 convolutional layers and one fully connected layer
(Figure 1B). During the training phase, the Adam optimizer
(Adaptive Moment Estimation), which incorporates principles
of momentum and adaptive learning rate methods, is utilized
for updating the weights of the model. This optimizer strategy
allows for efficient evasion from saddle points and accelerates the
model’s convergence to optimal fitting. To incorporate attention
mechanisms, we compared the performance of coordinate atten-
tion (CA), squeeze-and-excitation (SE) and convolutional block
attention module (CBAM). Our findings revealed that integrating
attention mechanisms substantially enhanced the model’s
stability and feature representation capabilities (Figure S4). The SE
attention mechanism only focuses on channel information [49].
On the other hand, the CABM attention mechanism encompasses
both channel and positional information extraction but does
not achieve an effective fusion of these features [50]. The
CA attention mechanism rectifies these limitations, enabling
superior extraction of spatial location information from feature
maps [29]. Additionally, with only marginal differences in
parameter quantity and floating point operations per second,
the CA attention mechanism demonstrates faster fitting speeds
during model training. Among the options, CA surpassed SE
and CBAM in performance, making it the preferred choice
for our final architecture (Figures S4 and S5) [49, 50]. The
CA module is strategically placed after the initial and final
convolutional layers, enriching the model’s ability to focus
on both spatial details within the feature matrix and inter-
channel correlations (Figure 1C). Subsequently, we experimented
with adding more complex residual network modules (Residual
Block) to our SoyDNGP model. However, we found that these
complex structures increased the number of parameters and
computational load without significantly boosting performance
(Figure S5). As a result, we opted for a CA + baseline network
structure for our final model.

To ascertain the optimal sample size for model training, we
trained the model using varying numbers of samples and mon-
itored the predictive performance. The samples were divided into
groups of 2 k, 5 k, 8 k and 10 k for training, each paired with test
sets of 11 784, 8784, 5784 and 3784 samples, respectively, over a
span of 150 epochs. Our findings indicated that a sample size
of 2 k yields lower performance in terms of accuracy and other
metrics, while no significant differences were observed among

larger sample sizes (Figures S6 and S7). Ultimately, we found a
sample size of 5 k to be the most suitable for model construction.

We then conducted individual predictions to test accuracy. The
results revealed that the prediction accuracy for regression tasks
ranged from 0.56 in R8 to 0.87 in SdWgt, while for classification
tasks, it ranged from 0.82 in ST to 0.96 in FC (Figure 1D). This con-
clusion was also supported by the absolute errors between nor-
malized observed and predicted phenotypic values, as depicted
in Figure S8. Through extensive testing, the model consistently
delivers impressive prediction accuracy in both regression and
classification tasks. In our study, some traits indeed exhibit imbal-
anced class distributions, leading to poorer model performance
in underrepresented categories. However, the model performs
exceptionally well for phenotypes with relatively balanced class
distributions (Figure S9). For instance, in the case of ’Flower color’,
which has a balanced binary classification, the model performs
well. In contrast, for ’H_CLR,’ the model’s accuracy for ’Br′ and
’Bl’ classes is noticeably lower, a result we attribute to the skewed
distribution of these classes in the data set (Figure S9).

Comparative performance of SoyDNGP and other
algorithms in trait prediction
In order to evaluate the performance of SoyDNGP in genomic pre-
diction relative to other ML methodologies, we utilized an identi-
cal data set for training SoyDNGP models, which was also applied
to other procedures. Although conventional ML techniques are
not optimized for regression tasks, we discovered that several
were capable of performing classification tasks with high accu-
racy. For instance, the DT model yielded prediction accuracies of
0.97 and 0.85 for FC and POD, respectively (Figure 2A). With the
SVMRBF model, the accuracy of ST and PDENS reached 0.82 and
0.84, respectively. Among the nine ML methods tested, SoyDNGP
exhibited balanced performance across all classification traits,
with accuracies ranging from 0.82 (ST) to 0.94 (FC) (Figure 2A).

To assess the performance of SoyDNGP in comparison with
other CNN-based deep learning models, such as deepGS and
DNNGP, we recreated their model architectures according to the
details provided in the original research literature using Python.
Regrettably, the original version of deepGS (rDeepGS) performed
subpar and was unsuitable for regression tasks, despite its com-
parable performance in classification tasks with other methods
(Figure 2B and Table 1). To confirm the efficiency of the deepGS
structure, we re-engineered it into a modified version (mDeepGS).
Training these models with the same data set as used for SoyDNGP
revealed that regardless of the trait or the amount of training
samples utilized in regression tasks, SoyDNGP showed improved
performance compared to both mDeepGS and DNNGP in our tests
(Figure 2B). The correlation coefficient (r) for DNNGP deviated
by approximately 5% from that of SoyDNGP (Figure 2B, upper
panel). Moreover, the discrepancy between predicted and actual
values (measured by mean squared error, MSE) was nearly 10
times larger than with SoyDNGP (Figure 2B, lower panel). This
suggests that DNNGP only has the capacity to predict trends and
qualitatively describe them but also lacks precision in quantifi-
cation. Owing to its shallow structure, mDeepGS was unable to
effectively manage the complexity of the regression task, thus
failing to fit accurately. Our observations revealed that the three
deep learning models—DeepGS, DNNGP and SoyDNGP—showed
comparable performances for qualitative trait classification tasks.
However, significant differences were observed in their perfor-
mances on regression tasks. rDeepGS, much like traditional ML
models, failed to effectively fit the regression tasks. This could

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad349/7306824 by N

ational Science & Technology Library user on 03 June 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad349#supplementary-data


SoyDNGP | 5

Figure 1. Overview of SoyDNGP’s features. (A) The transformation process of genotype and phenotype data as input for SoyDNGP. (B) Depiction of the
SoyDNGP module structure for classification and regression tasks. (C) Detailed illustration of the CA Block. (D) SoyDNGP’s predictive accuracy for 11 key
agronomic traits.

be primarily attributed to the less complex nature of classifica-
tion tasks that can be effectively tackled with ML techniques,
resulting in minimal differences in model performance across
these tasks. Additionally, we found that rDeepGS and mDeepGS
have shorter run times but their performance was unsatisfactory.
SoyDNGP and DNNGP had nearly identical run times, yet SoyD-
NGP had over 10 times the parameter volume of DNNGP. This
higher parameter volume allowed SoyDNGP to better learn and
fit more complex features, demonstrating stronger generalization
capabilities (Table S2). This evidence indicates that the SoyDNGP

model structure holds a significant advantage in genomic predic-
tion compared to other methods.

Versatile predictive capacity of SoyDNGP across
diverse soybean populations
Our model was developed using the USDA soybean germplasm
collections, leaving us uncertain about its application to other
resources across diverse countries and latitudes. To appraise the
predictive prowess of our constructed models via SoyDNGP, we
applied it to a soybean population comprising 559 accessions,
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Figure 2. Comparative analysis of predictive performance between SoyDNGP and other approaches. (A) The predictive accuracy of SoyDNGP in
comparison with traditional machine learning methods for classification tasks such as FC, PDENS, POD and ST. The numbers in parentheses on the
plot denote the number of classification categories. (B) The predictive accuracy of SoyDNGP in comparison with other deep learning-based methods for
regression tasks. Hgt, Oil, Protein, R1, R8, SdWgt and Yield represent plant height, oil content, protein content, flowering time, maturity time, hundred
seed weight and yield, respectively. Accuracy is quantified by the correlation coefficient (r). ’MSE’ denotes mean squared error, reflecting the absolute
errors between the normalized observed and predicted phenotypic values.

inclusive of 121 wild soybeans (G. soja), 207 landraces and 231
elite cultivars [38]. We executed predictions for 16 qualitative
traits and 12 quantitative traits (Table S3). To substantiate the
prediction accuracy for significant yield and quality traits, we
juxtaposed the phenotypes of specified soybean traits grown in
Zhengzhou, China in 2018 with our predictions. Our analysis
unveiled a robust positive correlation between predicted and
actual values (Figure 3A). For instance, the correlation for R1
and Hgt stood at 0.56 and 0.51, respectively. Most impressively,
the prediction accuracy for the SdWgt reached an exceptional
0.84 (Figure 3A). These results suggest that our prediction models

bear wide applicability across diverse soybean populations. One
potential explanation for the high prediction accuracy for seed
weight across different populations could be that environmental
factors play a lesser role in this trait compared to others, such as
R1 and Hgt (Figure 3A).

Remarkably, even though wild soybean was not included in
model training, our model remains useful for predicting the traits
of wild soybean (Figures 3B and S10). For example, our predictions
indicated high protein content and lower oil content and yield for
wild soybean compared to landrace and elite cultivars (Figure 3B),
a finding consistent with prior soybean research [51, 52]. This
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Table 1. The predictive accuracy of SoyDNGP in comparison with other deep learning-based methods for classification tasks

Trait Methods Accuracy Precision Recall f1 score

FC rDeepGS 0.95 0.94 0.94 0.94
mDeepGS 0.67 0.34 0.50 0.40
DNNGP 0.94 0.93 0.94 0.94
SoyDNGP 0.94 0.93 0.93 0.93

PDENS rDeepGS 0.85 0.84 0.83 0.83
mDeepGS 0.61 0.30 0.50 0.38
DNNGP 0.84 0.83 0.83 0.83
SoyDNGP 0.85 0.84 0.85 0.84

POD rDeepGS 0.82 0.77 0.69 0.71
mDeepGS 0.68 0.23 0.34 0.27
DNNGP 0.80 0.76 0.66 0.69
SoyDNGP 0.83 0.80 0.70 0.73

ST rDeepGS 0.81 0.71 0.63 0.64
mDeepGS 0.54 0.18 0.33 0.23
DNNGP 0.80 0.67 0.61 0.61
SoyDNGP 0.82 0.68 0.63 0.63

Figure 3. Evaluation of SoyDNGP’s predictive capacity in diverse soybean populations. (A) Comparison of observed and predicted phenotypes for selected
soybean traits cultivated in Zhengzhou, China in 2018 using the SoyDNGP model. The trend line depicts linear regression. (B) Distribution of predicted
phenotypes for a given trait across three distinct subpopulations.

also implies that gene exchange between wild and domesticated
soybean might be facilitated by significant gene flow [53].

Expansive application of SoyDNGP beyond
soybean
In an effort to evaluate the versatility and efficacy of SoyDNGP,
we put it to test with other species, using genotype data and five
representative traits from cotton, maize, rice and tomato popu-
lations [54–57]. For the sake of comparison, the same data sets
were also applied to DNNGP and mDeepGS. Apart from mDeepGS,
which exhibited the lowest accuracy, SoyDNGP demonstrated
predictive accuracies ranging from an average of 0.50 in maize
to an average of 0.71 in rice (Figure 4A). A similar performance
spectrum was observed in DNNGP (0.49–0.69) (Figure 4A). It’s

noteworthy that for smaller sample sizes such as maize and
tomato, with 214 and 508 samples, respectively, DNNGP outper-
formed SoyDNGP (Figure 4A). However, in larger sample popu-
lations like cotton and rice, exceeding 1000 samples, SoyDNGP
proved superior (Figure 4A). Despite the similarities in accuracy,
DNNGP’s mean squared error (MSE) was generally higher than
that of SoyDNGP (Figure 4B). Based on these findings, we can
conclude that SoyDNGP not only is capable of training and pre-
dicting phenotypes of traits in other species but also surpasses
the performance of other methods, thereby confirming its robust
versatility and effectiveness. Therefore, SoyDNGP stands as a
promising tool for genomic prediction, with its application poten-
tially extending beyond soybeans to other crops and organisms,
thereby bolstering the advancements in genomics and breeding
research.
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Figure 4. Comparative evaluation of predictive capacity among SoyDNGP and two other methods across diverse crop species. (A) Predictive accuracy of
various traits assessed by different methods, quantified by the correlation coefficient (r). (B) Mean standard error (MSE) between normalized observed
and predicted phenotypic values for specific traits using different methods. The number in parentheses represents the sample size for a given population.
Traits in cotton include boll weight (BW), fiber strength (FS), fiber length (FL) and verticillium wilt (VW). Traits in maize include ear height (EH), ear leaf
length (ELL), heading date (HD), plant height (PH) and pollen shed (PS). Traits in rice include culm length (CL), days to heading (DTH), flag leaf width
(FLW), PH and grain length–width ratio (GLWR). Traits in tomato include culm length (FSL), days to heading (OLD), sepal length to petal length ratio
(SPR), stamen length to (stigma length + ovary longitudinal diameter) ratio (SSR) and stamen length (STAL).

SoyDNGP is an open-friendly web server for the
genomic prediction of soybean
To make SoyDNGP accessible to users without deep programming
expertise, we have built a web server that bears the same name
as our model structure and is available at http://xtlab.hzau.edu.
cn/SoyDNGP. The SoyDNGP platform provides two easy-to-use
interfaces for exploring trait information. The first feature, ’Trait
Lookup’, lets users enter the taxon identifier, which could be
the plant introduction (PI) number or traditional name, to check
whether the corresponding record is already in our database
(Figure 5A). Additionally, our ’Trait Lookup’ section includes pre-
existing trait predictions for 500 soybean accessions, which are
in addition to the ones from the USDA soybean germplasm col-
lection, and all have available re-sequencing data [39]. We are
continuously increasing this number with daily updates to offer
an ever-expanding data set to our users. This functionality can
be beneficial for users wishing to select specific soybean acces-
sions based on certain trait predictions, thereby enhancing the
efficiency of SoyDNGP. The second feature, the ’Trait Prediction’
tool, allows users to upload a VCF file, which our robust predictive
models then use to predict trait values (Figure 5A and B). We also
provide users with the option to contribute to the enrichment of
our lookup database. If users opt to contribute, they will not need
to rerun the prediction when revisiting their results in the future.

DISCUSSION
Challenges in existing models
While deepGS and DNNGP have made notable contributions to
the field, they present certain limitations that necessitate further

research [10, 20]. Specifically, the use of 1D vectors for model
input in both deepGS and DNNGP can be limiting when repre-
senting complex SNP locus feature information. This simplistic
approach may not capture the full depth of genotypic variations,
thereby affecting the model’s predictive accuracy. Additionally,
the shallow, wide convolution architecture used in these models
may not be optimal for capturing intricate relationships within
the data. Given the limitations in earlier works, there was a
clear research gap in developing a model that not only improves
predictive accuracy but also addresses the shortcomings in data
representation and computational efficiency.

Features of SoyDNGP: addressing the gaps
This study aims to fill these gaps by introducing SoyDNGP, a
model that employs a more complex 3D matrix for input fea-
tures and employs a more rational structure for data processing.
SoyDNGP has several significant advantages over deepGS and
DNNGP models: enhanced feature density, optimized structure,
minimized feature loss, stable training through regularization and
incorporation of attention. Unlike deepGS and DNNGP, which use
1D SNP vectors as inputs, SoyDNGP uses a 3D matrix that includes
positional and mutational information. This makes it more suit-
able for CNNs and offers richer feature density. While DNNGP
and deepGS use shallow and wide convolutional layers, SoyDNGP
employs a deeper and narrower architecture with stacked small
kernels for better feature extraction and efficiency. Instead of
using max-pooling like deepGS, SoyDNGP uses a convolutional
stride of two, effectively fusing and downsampling features with
minimal loss [20]. SoyDNGP integrates Dropout and Batchnorm
between convolutions and employs L2 regularization, enhancing
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Figure 5. The user interface and functionalities of the SoyDNGP web server. (A) Descriptions of the two main functions built into the web server are
provided. The upper panel showcases the entrance interface on the webpage, while the lower panel outlines the workflow of the two functions. (B)
Display of the SoyDNGP prediction function page within the web server. The platform allows users to upload their own VCF files to generate predictions
for 28 traits.

model stability and preventing overfitting more effectively than
its predecessors [58]. SoyDNGP uses CA mechanisms to consider
spatial and channel information, thereby improving its feature
extraction capabilities.

Data challenges and the rising need for deeper
models
However, our study faces two primary challenges with the data
set. The first is an imbalanced sample distribution. Many traits

under consideration have multiple categories, often with intricate
subdivisions, which lead to a skewed distribution of sample num-
bers across these classes. This imbalance poses a challenge in
training a robust model effectively. The second challenge is data
reliability. Traits such as plant height, flowering time and maturity
time are often measured without standardized protocols, result-
ing in significant errors during data collection that affect the
model’s predictive performance. Our experiments show that as
the sample size increases, shallow neural networks like DNNGP
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and DeepGS begin to lose their efficacy in quantitatively rep-
resenting traits. Given the fast-paced advancements in biotech-
nology, the need for deeper models like SoyDNGP is increasingly
becoming evident. Our focus remains on model interpretability
in the GS domain, as it is more critical here than in other com-
putational disciplines like image recognition or natural language
processing. We have designed our model to be as interpretable
as possible, minimizing irreversible operations like pooling. This
aligns with our broader goal of identifying crucial gene locations
possibly correlated with different traits.

Toward a universal platform in GS
Moreover, there’s a lack of a universally adaptable deep learning
platform in the GS domain, similar to what YOLO or BIOBERT
provides in their respective fields [59, 60]. While Kumar et al.
[61] recently introduced the DeepMap, it has limitations in terms
of flexibility and scalability. To address this, we have developed
the SoyDNGPNext PyPI package. Based on the baseline SoyDNGP
algorithm, this package allows users to easily reconstruct models,
train data and make predictions through simple Python com-
mands, thereby enhancing the model’s adaptability to various
data sets.

In conclusion, we have created and validated SoyDNGP, a CNN-
based model tailored specifically for predicting soybean traits.
The results underscored that SoyDNGP consistently superseded
deepGS and DNNGP models, exhibiting higher accuracy with
reduced model complexity. Moreover, we tested SoyDNGP’s
adaptability across an array of crop species, including cotton,
maize, rice and tomato, highlighting its potential as a resilient
and versatile tool for genomic prediction. To expand SoyDNGP’s
reach, we established a user-friendly web server that offers users
easy access to trait predictions and the ability to calculate traits
using VCF files. Moving forward, our efforts will concentrate
on consistently augmenting the database of pre-existing trait
predictions and enhancing the accuracy and efficiency of
the model. With the model packaged as an accessible PyPI
program and integrated into a user-centric web-server—the
first of its kind for soybean trait prediction—breeders, even
those without bioinformatics backgrounds, can easily predict
traits from genotype data sets. This is especially crucial in
scenarios where immediate phenotype knowledge is paramount
for breeding or disease research. Our model’s accuracy aids in
streamlining the selection process, enabling researchers to swiftly
pinpoint promising plants or progeny. Moreover, our model’s
precision is the foundation for identifying pivotal genetic features
contributing to specific traits, marking our forward direction.

Key Points

• We developed SoyDNGP, a convolutional neural network-
based model that significantly advances soybean trait
prediction by outperforming existing methods in both
parameter volume and predictive accuracy.

• SoyDNGP demonstrated remarkable precision in pre-
dicting complex traits across different sample sizes and
trait complexities, showcasing its robustness and versa-
tility for use in other crop species.

• A user-friendly web server has been designed for SoyD-
NGP, enabling researchers with varied programming
experience to access and use the model effectively,

thereby opening up new possibilities for efficient soy-
bean breeding.

• SoyDNGP’s versatility was validated across multiple
crop species, establishing its utility as a broad tool for
genomic prediction, not limited to soybean.

• The combination of superior performance and accessi-
bility makes SoyDNGP a potential game-changer in the
field of crop breeding and genomic analysis.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordbjournals.
org/.
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work structure are accessible at https://github.com/IndigoFloyd/
SoybeanWebsite and https://github.com/IndigoFloyd/Soybean
Website. In addition to this, the source code detailed in our
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